Convergence proof of matrix dynamics for online linear discriminant analysis

نویسنده

  • Kazuyuki Hiraoka
چکیده

In this paper, we analyze matrix dynamics for online linear discriminant analysis (online LDA). Convergence of the dynamics have been studied for nonsingular cases; our main contribution is an analysis of singular cases, that is a key for efficient calculation without full-size square matrices. All fixed points of the dynamics are identified and their stability is examined. © 2010 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence Analysis of Online Linear Discriminant Analysis

Convergence of a matrix dynamics for online LDA is analyzed. Especially, stable spurious solutions are pointed out and two schemes to prevent the spurious solutions are proposed. The performance of the algorithm is confirmed by simulations of face identification.

متن کامل

Extracting Dynamics Matrix of Alignment Process for a Gimbaled Inertial Navigation System Using Heuristic Dynamic Programming Method

In this paper, with the aim of estimating internal dynamics matrix of a gimbaled Inertial Navigation system (as a discrete Linear system), the discretetime Hamilton-Jacobi-Bellman (HJB) equation for optimal control has been extracted. Heuristic Dynamic Programming algorithm (HDP) for solving equation has been presented and then a neural network approximation for cost function and control input ...

متن کامل

A New Incremental Optimal Feature Extraction Method for On-Line Applications

In this paper, we introduced new adaptive learning algorithms to extract linear discriminant analysis (LDA) features from multidimensional data in order to reduce the data dimension space. For this purpose, new adaptive algorithms for the computation of the square root of the inverse covariance matrix 2 1 − Σ are introduced. The proof for the convergence of the new adaptive algorithm is given b...

متن کامل

Optimal adaptive leader-follower consensus of linear multi-agent systems: Known and unknown dynamics

In this paper, the optimal adaptive leader-follower consensus of linear continuous time multi-agent systems is considered. The error dynamics of each player depends on its neighbors’ information. Detailed analysis of online optimal leader-follower consensus under known and unknown dynamics is presented. The introduced reinforcement learning-based algorithms learn online the approximate solution...

متن کامل

ALDA Algorithms for Online Feature Extraction

In this paper, we present new adaptive algorithms for the computation of the square root of the inverse covariance matrix. In contrast to the current similar methods, these new algorithms are obtained from an explicit cost function that is introduced for the first time. The new adaptive algorithms are used in a cascade form with a well known adaptive principal component analysis (APCA) to const...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Multivariate Analysis

دوره 102  شماره 

صفحات  -

تاریخ انتشار 2011